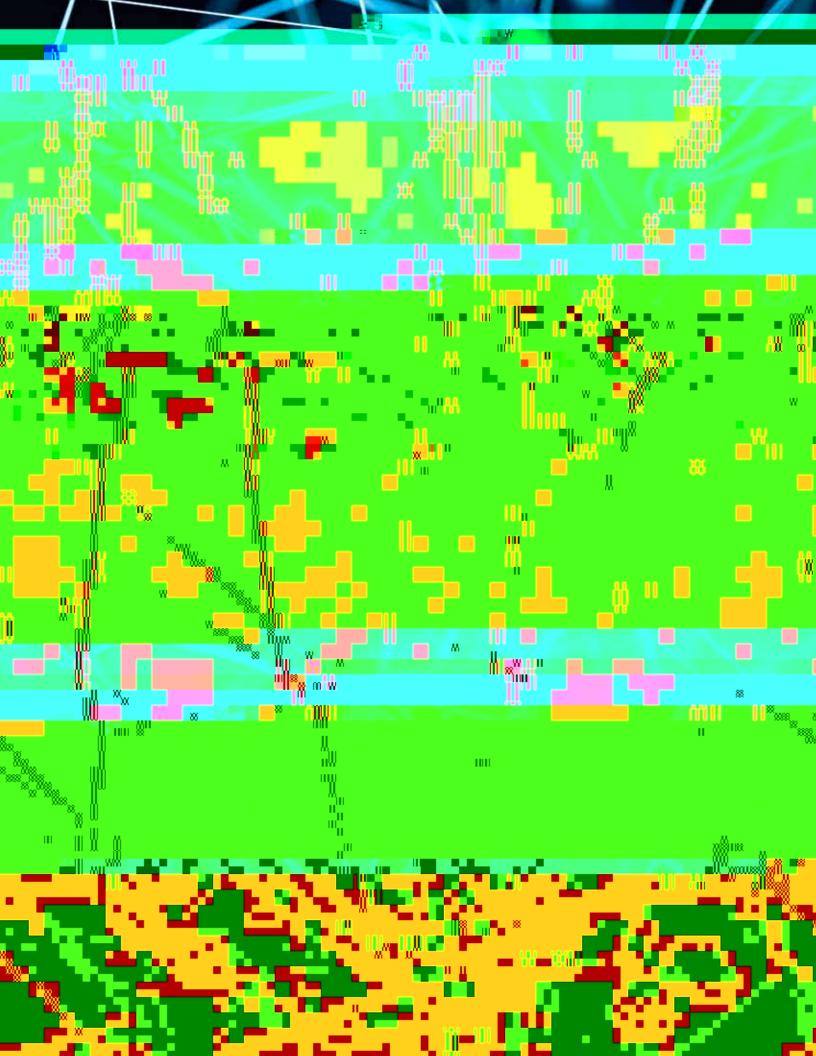

# CONCEPT TO COMMERCIALIZATION

V



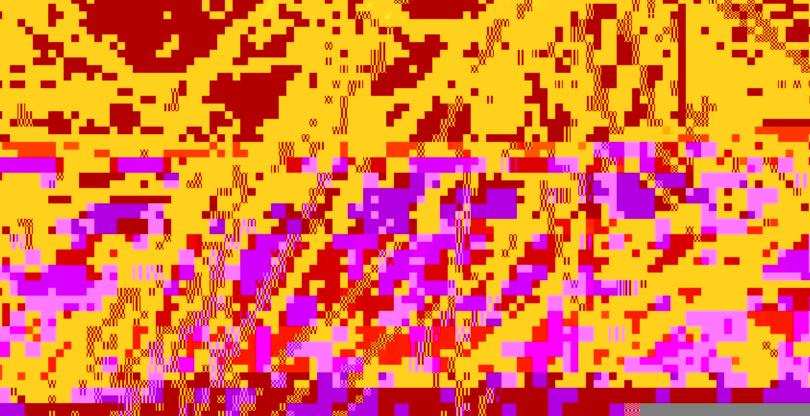

**UII** 

#### ABOUT THE MILKEN INSTITUTE

Ny a , a a a m a

# CONTENTS




### **INTRODUCTION**

a a vavav a mma a a a v - m m a . maa v a a m,a m a m ma va .<sup>2</sup> va a a v m (&D) av, m af -a aa Ama a v .<sup>3</sup>A, - a f ma a Ama a a a a a a a a a a a m ma.

21 , avaava aa fa af -a am vm.a. m -a mvm:a a maaa a ,aaa av fvam.faam,a f

ma f v V a V () ava f m a f ma a f a v ama a a ave, , , a aama- af m a - Am v v f va mm a af amf va v ,f aaa , m a,a v m fa va a .<sup>11</sup> v f a ama a maam a va a a am v a v f m ; v, v f a a, f , f m





# TECHNOLOGY TRANSFER, COMMERCIALIZATION PROCESS, AND REGIONAL ECONOMIES

#### 2.1. TECHNOLOGY TRANSFER AND COMMERCIALIZATION PROCESS

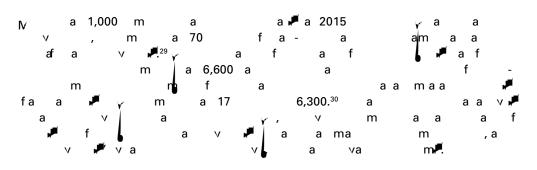
| v 🏴                    | 📕 afa m        | m a a a a             | ,F     |      |
|------------------------|----------------|-----------------------|--------|------|
| 🌂 a                    | m f a          | m maa                 | а      | 1930 |
| a 1940                 | a C ma         | f <mark>∖v</mark> .Cm | av a f |      |
| f a                    | a ff           | f                     | а      | а.   |
| F,Cm                   | a v 📕 am a 🛛 f | a fAm                 | a a    | а    |
| Dvm,                   | f am 📕 v       | aam, f                | ma 📕 a | a 🖷  |
| - ff . <sup>14</sup> A | 1930 , 🕈 a f   | a F                   | ma     | a    |
|                        | fama           | а                     | а      | а    |

va-a aaa aff m, mm aa ma a , avaff -.vav fma aafa a,vf,a mff mf

maa fmf ma a m .<sup>19</sup>

a a a v m v m a a a m f m a f ma v v a f f f a m a ava v mm a a a &D av a ava a v а а 📕 a a а a a va v , va а. а ta'vam am vaa faaa**#** a a , a a am f 📕 am m. v &Da 🕨 m v а f a v m а aa a af J va a

a ma fv , P а а а ₽ V a 📕 . ma v m а a a . a af v a a a a a,aa , 🔎 a vaa 📕 ( 📕 fam а f, a 📕 v fma,a aa fa va a a a 📕 a av) a fm v mm a am.


₽fa maa . afmaa,<sup>20</sup>afa Α f v ک. v 📕 a m v--v a aa,²1 m m≢av≢,²²a fa aaa f v f a a a,<sup>21</sup> m v - -v а . A a v. a ⊮ v f mmm v ≠f a <sup>23</sup> a 📕 m a v a .<sup>23</sup> , a f maа f aa am m 📕 a f am.

#### 2.3. HISTORY OF TECHNOLOGY TRANSFER

mm a a f а а а а a a a a a 📕 a f ffa a fa affa .∜maa am, fa f v а, а аа а afa. • а а a a Ĵа . a v,a mmafffv af v, aa aa a aa vama. a a v а

mmaaa
mmaaa
afafaa
afafaa
amaa
a va
a va
a va
a aa
a

#### 2.4. SUMMARY OF SCALE OF ACTIVITY



## UNIVERSITY TECHNOLOGY TRANSFER AND COMMERCIALIZATION INDEX

Dν m faa aa а а v m fa a ; v ٦ , v Cmma () am - a ma a f а а f а av am a а

a aa  $\blacksquare$  A a f v  $\blacksquare$   $\blacksquare$ Naa (A<sub>N</sub>)va A<sub>N</sub>'A a Av $\blacksquare$  v , -, v  $\blacksquare$  fCaf a  $\checkmark$   $\blacksquare$  m.<sup>31</sup>

f 🖊 a av a (2012-15)f f , P m a а f a f , : a m ,a 📕 a av a f а f m . а ma а af а 📕 a , 🔎 🏓 а v v f а avaa ,faaf

📕 a Ea v m m ff v а ( afa ) a а va mm a a .F am , a a a аv а f v a a a mm ff fma v ر اللجي а а a a va a

,a ma 📕 а а а m а а a a а а av ma f mm a a . v ۲ a a a ааа а а f а ,**≓**.∛ a v mm a a m av a ma а а v f m a v m v,a m а а а . 'а 📕 f v 📕 F m a v 🏴 f mm a a а ۲ m m ma а а ,

a 2a a va a a a , a a a f m а а f m , 📕 f a a а а 100f а а а v f ma а m

#### 1 - 1 · - · 1 1 1 1 VV V 1 I 1 111 1 | 1 1 3 5 3 c ·c 3 3 3

# Table 2: University Technology Transfer and Commercialization Index Variable Weights

3

3

**5** 

*\** 0

f

E

Ē

3

3

**5** 

5

3

••

Table 3: University Technology Transfer and Commercialization Index: Top 25Institutions

#### A DEEP DIVE INTO UNIVERSITIES AND THEIR RANKINGS ON THE INDEX

University of Utah (a) v a fa Cmm aa (a f100), fm14 aa a 2006 a a ' 2006, a v v fm a v a a ma mma a .<sup>35</sup> aaa \$417.2 m a 2015, a am a . a a a a a ; a , , m,a a a a a a a a a ,a a a a a a a a v v a .

F m 2012 2015, a a \$211.8 m m \$135.8 a m a a a m m a 69 a - , a ma a a m m a C a ma m a a a a a a a v m a ma a a v f a fa a a a v m a ma a a v f a fa a a a a va a a m m , a a a mm a a . C mm a a E C mm a a , a a m fa f a f mava f ff a ma f a f 36

a v f aa v ₽fa 2016, D. A ₽ maaam aaa f a :

mmaafavavefaa aamma 'vamm... vffaaaaa vea aaaa.Avfa,fa a Caaeaafm vaa.

v 📕 faama 📕 ff faa mmaa f maa 📕 fa AC f<sub>N</sub>a va (C), a a vaavaa <sup>37</sup>



 Stanford University'
 a m
 ma
 a a
 ma
 a a
 a

 a a
 ma
 a a
 a
 a
 a
 a
 a
 a

 f mf
 2006,\* a f
 'fa a m
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a

\* af ', f f (, ) a a 1970, f a ', a a f Ba'-D A. a m a va a \$5,000. C m a v 1970, a a a \$1.77 a , f a a, \$319 m v a \$308 m a ma a a v a a a ; a a ma () a a a a a f f a m a ; , a a , a a v v m M a a a f a f ' va , f a 1971 \* a f a v  $\sqrt{v}$ ama a' a a , ma , v

University of Pennsylvania () a, a f 95.39, f m 12 2006. C f ma a a a a m . C f va a 'a am a mm a a a a - 2014. a a a f , m a \$888 m 2015, a \$3.6 a 2015. m a \$42 m 2015.

va C vaa aa f vavav ,afma af 23-a va aa aaa v C - aavaa v av ava-m,a aaaa a.aa v G - aavaa v av ava-m,a aaaa a.aa va va-C f Ava Caaaaam Am G maa ama vaa aaa,f

University of Washington () a v, a a a a f m 24 2006, a f 95.11. a , m a a , a \$42.8 m 2012-2015. m a a , a \$42.8 m 2015. a  $C_N$  2015, a , m a v va m.  $C_N$  a, va a, a m a am f va a f a a f , a a a a f a avaa f 30-50 a - a.

| A a   |    | ff      | а   | а              | а | ,  |    | \$1.4 |    | а       |
|-------|----|---------|-----|----------------|---|----|----|-------|----|---------|
| 2015. | Ť  | fⅣ      |     | а              | а | af | f  | а     | а  | 2016, a |
| 27    | f  | а -     |     | С <sub>М</sub> |   | а  |    |       | а  | a a     |
| . f   | ma |         | 📕 а | f              | а | m  | ma | 26    | ,  | A       |
| а     | f  | \$200 m |     | 2016           |   | а  | а  |       | ma | a m     |

Carnegie Mellon University a 10 a f 93.72. a , a m - a m a a, v a v a am afa a a f a mm a a , C f a f a E C a (C EC). M , a a v f Ca V ' m a m , V a a a m a a ma . G a, f m a a a m f v a a f a a a a a M a a a m f \$60,000 v m N G Cm .

A avama ,Ca <sub>N</sub> aa \$244 m a 2015. va,312 2012 a 2015, a \$38 m ma a v am .Af v a m a faa a v Ca <sub>N</sub> v f <sub>N</sub> a,a f m a a A a av,aa <sub>N</sub> av m .a <sub>N</sub> av a f a <sub>N</sub> a a Arizona State University (A\*)21, a mv m v m f m 432006.N a Caaaa m amm a a.A E a f maa m amm a a.A E a f mma aA\*'E vaaama f A\*v a vma a.A\*mm a af ma () a vfa().47

University of Central Florida (CF), a a f f ma A a a f f ma A a a f f ma A b 2006, A a a 2006, a , a , m a 48 v m a a CF a Cam a a a m a ' 170,000- a f m a a fa f f a a a a a m a a 198,000- a f B B m a ' , a mm a a f 49

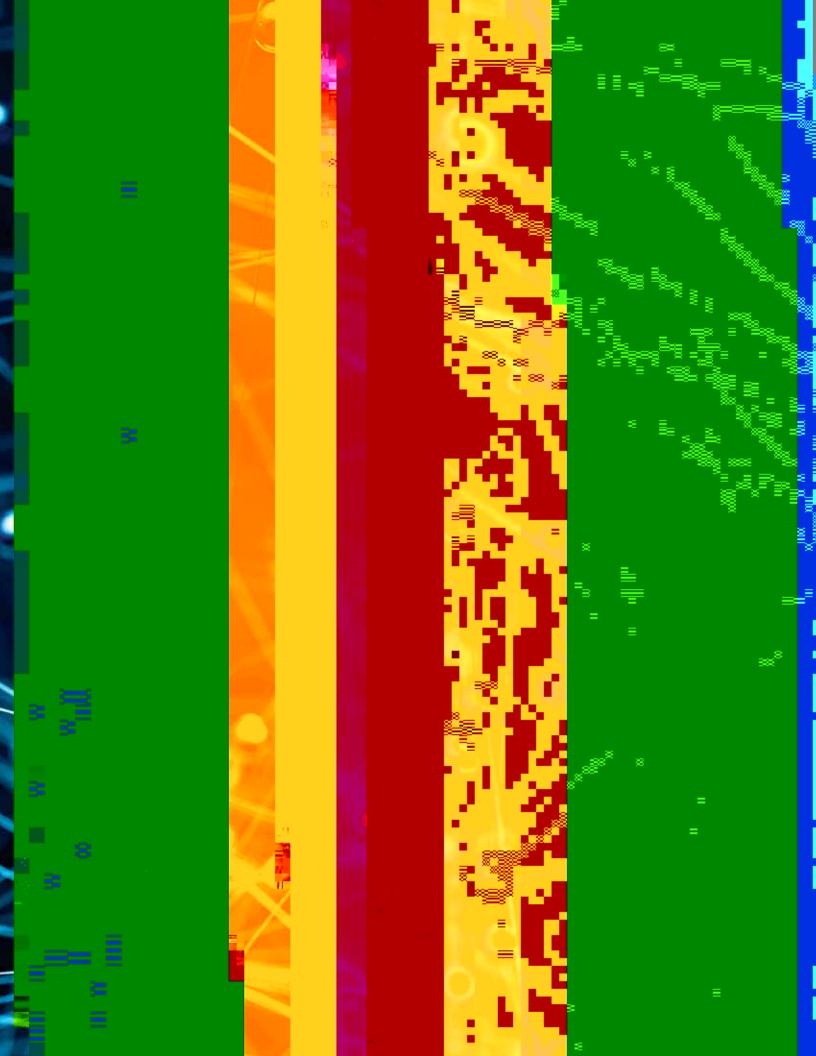
Northwestern University



# UNIVERSITY TECHNOLOGY TRANSFER AND JOB CREATION

va a v a a a a av a a ,a a ama v f ř. m.C.a ma f m a v a a m a ř. ř.E m.C.a a C.mm 1997, a řa C.a.a.a a E.a.a.G. a.a.m m Am a a.C.a.a ř. m(A.O.<sup>c</sup>) a a a Am a' m.f a m fřa a a C. (<sup>c</sup>C)f A.O.<sup>c</sup>a f am va a a m a a a ma f .C.a a řa a a C.a.a. (<sup>c</sup>,C) a a v m a f va f -, a,a v f m.

 F
 am, , , C
 av
 a
 m
 m


 amm, , f
 a
 v
 (a
 a
 m
 f
 a
 v

 .50
 1997
 f
 ma
 a
 a
 a
 a
 a
 f
 v

 2002
 m
 a
 a
 .4
 A
 A
 A
 C
 f
 &
 v

 1997
 2002.51
 B
 2007
 f
 ma
 .4
 A
 A
 A
 C
 f
 A
 C
 A
 C
 A
 C
 A
 C
 A
 C
 A
 C
 A
 C
 A
 C
 A
 C
 A
 C
 A
 C
 A
 C
 A
 C
 A
 C
 A
 C
 A
 C
 A
 C
 A
 C
 A
 C
 A
 C
 A
 C
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

|   |   |   | а |   |   | а | а | а | m   | а | а |
|---|---|---|---|---|---|---|---|---|-----|---|---|
| а | а | v | m | а | а | f |   |   | . В | а | f |

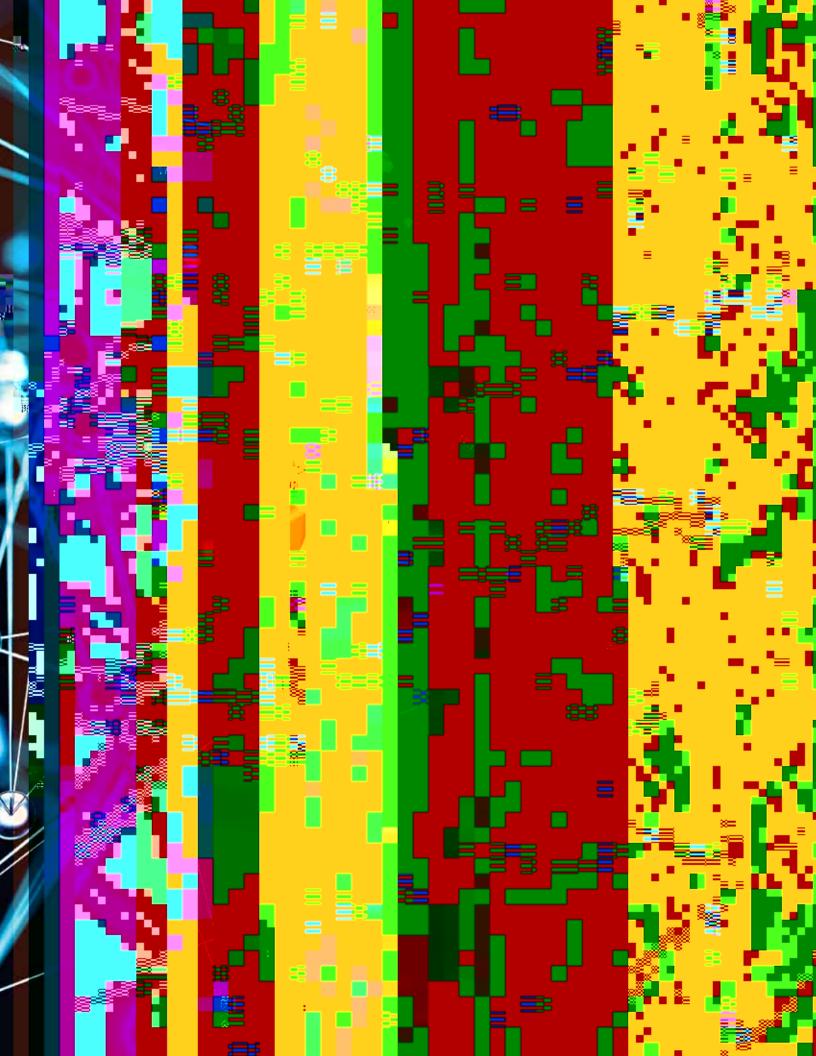


### **CONCLUSIONS AND POLICY RECOMMENDATIONS**

v a f a Am a c f va .F aa f f y aa v m a a f a Amaa m а f ۲ а v . а а , f f а Am a m а .

а а 📕 afa mmaa v va v . 📕 а aa 📕 13 f 25 а aa a,aa mamaa,aaa v a v a a am a а a, a av ma. va f v a f m v a m

v afa afm-ava, mmaaa aafaf.A avaaa, aamafm mafa me

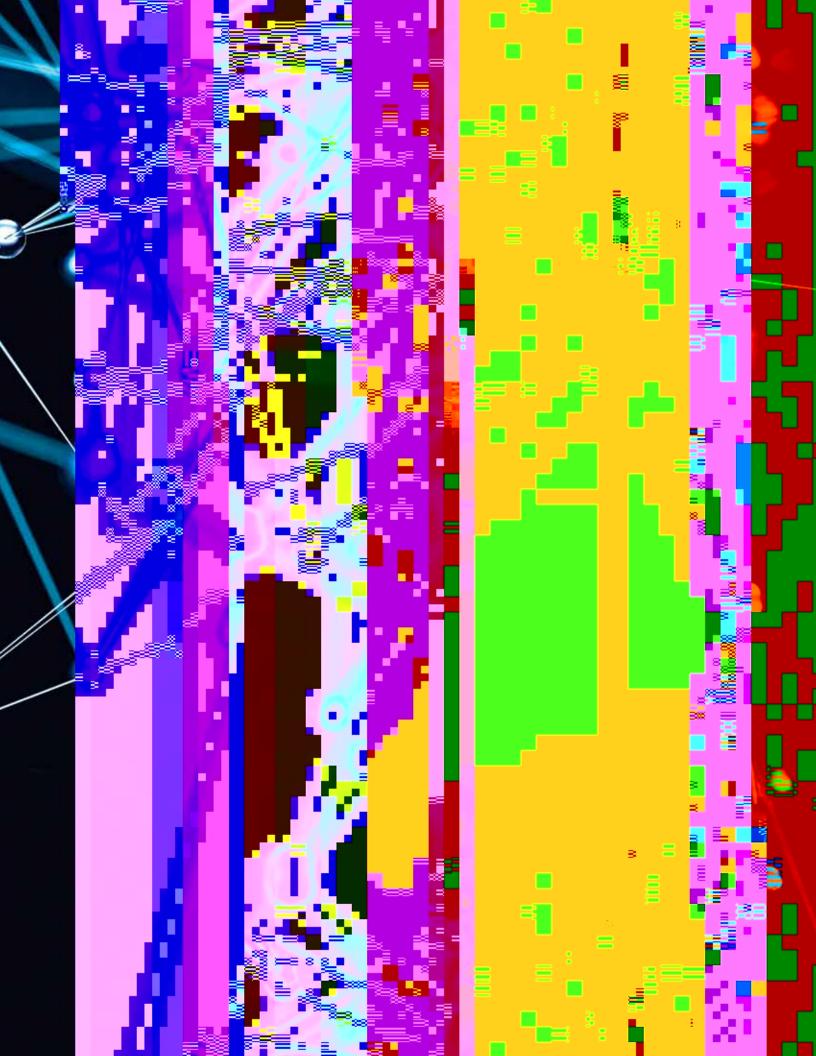

vaa fm vavaa; ≢aa f a &Da -afa a.

v aa<sub>N</sub> ′v I Iafa Cmmaa av Im -af,a v afma. aa<sub>N</sub> ′mmaa :

- Maintain basic scientific research funding. Ba a v m
   m Pa v a a a a a
   a f mm a , a v a a
   a
- Incentivize technology transfer through a new federal commercialization fund.
   f I a f f v , f a v m
   a a f a a mm a a ,
   m va m . v m a a m m a a ma v f am.
- f -• Increase technology transfer capacity through federal matching grants. a v m mm a ma a am a f a <sub>Y</sub>. a a aff a m a a av a vv a ma 🛛 a 🟴 mma. ma а а а faa m а a v 📕 a m. m. av v 📕 a f 📕 a a , **1**
- Increase technology transfer efficiency by adopting best practices. A a

   m m a
   v a
   m m a
   v a
   f

   m m a a
   v a
   f
   a
   v f
   f
   a
   c m a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a
   a</li






|    |                         |       | <b>T</b> 1 - 1 | <b>T</b> 1 1   | 0        |       |
|----|-------------------------|-------|----------------|----------------|----------|-------|
|    |                         | s     | -s             | s m            | S -<br>S |       |
| 81 | S Uı ıy                 | 72.11 | 64.01          | 81.16          | 68.20    | 78.65 |
| 82 | S f_Bi i Si             | 66.94 | 77.52          | 87.65          | 58.00    | 78.60 |
| 83 | Uııyf <u>l</u> ıfı,SB   | 88.37 | 69.16          | 62.33          | 77.29    | 78.44 |
| 84 | Ви ""& ""Ни" <u> </u>   | 68.57 | 75.07          | 86.94          | 57.55    | 78.02 |
| 85 | iŲ iyf                  | 73.92 | 63.60          | 81.24          | 65.69    | 77.96 |
| 86 | <u>ч</u> н <u></u> В    | 75.51 | 77.31          | 88.16          | 51.99    | 77.87 |
| 87 | UııyfA f Mı_Sı          | 55.74 | 59.21          | 83.58          | 72.75    | 77.85 |
| 88 | έξι S. Uτιγ             | 79.60 | 60.81          | 89:99          | 65.23    | 77.78 |
| 89 | <u>∖</u> S⊤H <b>T</b> y | 50.15 | 72.97          | 86.80          | 65.47    | 77.64 |
| 90 | USUııy                  | 70.33 | 69.53          | <b>\$</b> 0.68 | 64.17    | 77.55 |
| 91 | ¶тіі Ші іу              | 72.53 | 60.32          | 5. ر¶ ا        |          |       |

|                          | <b>T</b> ( ) <b>T</b> ( )                                     |
|--------------------------|---------------------------------------------------------------|
|                          | - <sub>s</sub> - <sub>s</sub> - <sub>s</sub> ms- <sub>s</sub> |
|                          |                                                               |
| 124 Uııyf D <sub>m</sub> | 68.78                                                         |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |
|                          |                                                               |

|     |                                           |       | ¶i i  | <b>T</b> E E | c        |       |
|-----|-------------------------------------------|-------|-------|--------------|----------|-------|
|     |                                           | -s    | -s    | s m          | S -<br>S | -s    |
| 210 | F U i vy                                  | 0.00  | 67.93 | 0.00         | 65.66    | 35.89 |
| 211 | <b>т</b> В_у⊢_ <b>т</b> у                 | 33.07 | 25.70 | 29.20        | 39.36    | 35.50 |
| 212 | ¯F γ_ ·                                   | 43.62 | 0.00  | 70.49        | 0.00     | 33.77 |
| 213 | M <sub>m</sub> iUi iy                     | 34.29 | 0.00  | 67.43        | 0.00     | 31.10 |
| 214 | Uiiyf <u>F</u> i                          | 0.00  | 39.25 | 62.56        | 0.00     | 30.06 |
| 215 | <u>FUy</u>                                | 19.80 | 0.00  | 69.70        | 0.00     | 29.61 |
| 216 | Uııyf Mi                                  | 64.26 | 46.63 | 0.00         | 26.71    | 28.11 |
| 217 | Uiiya(f <u>F</u> i                        | 0.00  | 0.00  | 67.27        | 0.00     | 25.47 |
| 218 |                                           | 18.86 | 25.38 | 47.55        | 0.00     | 25.18 |
| 219 | ι S Uι ιγ                                 | 37.11 | 26.62 | 0.00         | 0.00     | 10.34 |
| 220 | ''A <sub>m</sub> y0 у                     | 47.09 | 0.00  | 0.00         | 0.00     | 7.64  |
| 221 | NU iynTii Tfy                             | 0.00  | 41.73 | 0.00         | 0.00     | 6.77  |
| 222 | l_ı ı_HSy_m                               | 31.73 | 0.00  | 0.00         | 0.00     | 5.15  |
| 223 | Β <u> </u> S   U                          | 29.85 | 0.00  | 0.00         | 0.00     | 4.84  |
| 224 | ∎Ų i iy fD                                | 24.78 | 0.00  | 0.00         | 0.00     | 4.02  |
| 225 | Lif i S U i i <u>γ</u> i                  | 0.00  | 0.00  | 0.00         | 0.00     | 0.00  |
| 225 | m y- y A y L U i € i y<br>H U i y M i _ € | 0.00  | 0.00  | 0.00         | 0.00     | 0.00  |
| 225 | H <sup>™</sup> עי יע אין ע                | 0.00  | 0.00  | 0.00         | 0.00     | 0.00  |
| 225 | S U ı ı y                                 | 0.00  | 0.00  | 0.00         | 0.00     | 0.00  |
| 225 | S Uιι, ιγ                                 | 0.00  | 0.00  | 0.00         | 0.00     | 0.00  |
| 225 | S_1 1 1                                   | 0.00  | 0.00  | 0.00         | 0.00     | 0.00  |



# **APPENDIX**

## 7.1. METHODOLOGY OF INDEX CONSTRUCTION

#### Step 1: Data Collection

• A<sub>N</sub> aaf fm **≠**a avava v vaa **≠** aa aaaa .(1)a , (2) ,(3) m,(4)∛a-Fm,a(5)a aF.aaf f a aa.

#### Step 2: Transforming Variables-part 1

, , m,∛a-aaa-aF. aaf vaa • a 📕 a ava a a a .

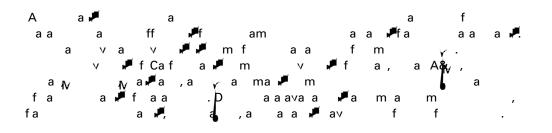
#### Step 3: Transforming Variables-part 2

- a a f vaa a a a a m.
- F m a f 100 a favaa.

#### Step 4: Index Calculation-Stage 1

• a av a va a a a a a ava vaaa aa fma≢50%-50%am ≠ m. а f ff vaa.

#### Step 5: Index Calculation-Stage 2


| •      | f    |   | va a     | : a        | (15%),     |     |     |
|--------|------|---|----------|------------|------------|-----|-----|
| (15%), |      | m | (35%), a | ¥`a -      | Fm (35%) a | m   | , F |
|        | va a |   | ŧv       | <b>, F</b> | va a       | , P | a a |
|        |      |   |          |            |            |     |     |

#### Step 6: Index Calculation Final Calculations

•Fm aa f100a favaaaam.

## Table 6: Milken Institute

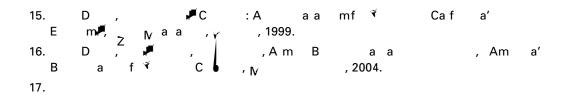
| Indicators     |                                         | Weights for Stage 1 | Weights for Stage 2 |
|----------------|-----------------------------------------|---------------------|---------------------|
| c $1 c$        | , J                                     | 3                   | <b>5</b>            |
| • •            | - CICC .                                | 3                   | -                   |
| _              | , , , , , , , , , , , , , , , , , , , , | <b>a</b>            | 3                   |
|                | टाटट <sup>.</sup>                       | 3                   | -                   |
| • c * 1 • c    | , , , , , , , , , , , , , , , , , , , , | 4                   | 5                   |
|                | टाटट <sup>.</sup>                       | 3                   | -                   |
| , <sup>4</sup> | , , , , , , , , , , , , , , , , , , , , | 3                   | <b>5</b>            |
| 1              | · 6166 .                                | <b>ئ</b>            | -                   |



## 7.2. SUPPORTING TABLES FOR CASE STUDY IN SECTION 4.2

| Table | <b>م</b> |
|-------|----------|
| Table | - /      |

| One tail two-sample T-tests of equal variance with correlations |                          |                          |  |  |
|-----------------------------------------------------------------|--------------------------|--------------------------|--|--|
| Correlations<br>(T-statistics)                                  | NAICS 3254<br>Employment | NAICS 3391<br>Employment |  |  |
| Hospitals                                                       | 5                        |                          |  |  |
| Medical School                                                  | ່_ວ<br>ວ_                | ,<br>,                   |  |  |
| LN (Total Research<br>Funding)                                  | ్య<br>స_                 |                          |  |  |


# 

#### Table 8: Life Science Metro Clusters vs. States

| Metropolitan clusters of the top tier states by sectors 3254 & 3391 output | Bottom tier states by sectors 3254 8<br>3391 output |  |
|----------------------------------------------------------------------------|-----------------------------------------------------|--|
|                                                                            | 1 c <sup>-1</sup> c <sup>-</sup> e .                |  |
|                                                                            |                                                     |  |
|                                                                            |                                                     |  |
|                                                                            |                                                     |  |

## **ENDNOTES**

- 1. Cafa′ ∨a -Ba E m.≢: <sub>IV</sub> a a a E a fv 2015.)
- 2. D, a<sub>N</sub> aa a, ⊀a ⊯a ∛ : \* a Am a' va E m≢, <sub>N</sub> , , , , , 2016, . 16-17.
- 4. D, ¥, Am Ba,aaa, A<sub>N</sub>, a fD: Eff fEaaAam aE <sup>Z</sup>m ₽, <sub>N</sub> , Fa≢2013, .2-6.
- 5. <sup>\*</sup> \_\_\_\_\_.a m. /A <sub>NN</sub> a /m a<sup>\*</sup>/<sub>ℓ</sub> ∨ ₽ DF/A <sub>N</sub> F 2015 <sup>\*</sup> a F A . f
- 6. D,Am Ba,a,<sub>NNN</sub>a:AGaAa⊮ f v⊯B II afaCmmaa,<sub>N</sub>, \* m 2006.
- 7.  $\checkmark$  N a a N . , D a & D $\checkmark$  v , a f E m B av a a a , .53,2004, .237-260. A C. B a a  $\checkmark$  B , a G<sub>N</sub> ... a , C , va a G : A C m a a v  $\checkmark$  f E a C , ... D a N ( N a a F m : G a - a D mma, ( : 2001) .190-214, a .Ba a a G<sub>N</sub> ... a , D am f F m G a E  $\checkmark$



| D m 2011 :// . a a . / a /251514571 Dff                                          |
|----------------------------------------------------------------------------------|
| 🔎 af 🥤 -Ba a Dv m -Ba                                                            |
| <u>af<sub>N</sub> ama Ba, A 1/4/2017</u>                                         |
| 61. A . , D a 🐔 🕺 , Ba 🖡 B ma , A Em a A a 🖡 f                                   |
| 📕 f Aam Ea fma v 📕 📕 af,                                                         |
| a C a C a . 16, .4 24/06/2017, a 12/29/2017                                      |
| 62.B a f a 🤾 a , y a a Em 📕 m 🤻 a 📊 a🖊 a🖊 2015                                   |
| a a 🔎 a aEm ┩m a a E ma,<br>AC∛ 325400- ama a a <sub>NN</sub> afa , <u>://v/</u> |
| AC <sup>*</sup> 325400 - ama aa <sub>NN</sub> afa , <u>:// v/</u>                |
| / / a <u>4 325400, m a 2/17/2017</u>                                             |
| 63                                                                               |
| 64                                                                               |
| 65.B a f a ∛ a , , a a Em ≢m ∛ a <sub>N</sub> a≢2015 a a                         |
| 🔎 y a aEm 🖡 a a E ma AC∛ 339100-                                                 |
| N aE m a ∛ ∎ Nafa , <u>:// . v/ / /</u>                                          |
| <u>a 4 339100. n a 2/17/2017</u>                                                 |
| 66.E a a a , 📕 m a y ma a, E                                                     |
| 67.C FB a 2014 <sub>N</sub> ∛Am Fm aa                                            |
| 68.G E , E a . G a a b am . , a C a 📕 a m-                                       |
| a?Ev fmCamaa,AmaEmv,                                                             |
| 100, .3, 2010, <u>:// / a /27871244 a 1/9/2017</u>                               |
| 69                                                                               |
|                                                                                  |

 $(1,1) \quad (1,1) \quad (1,1$ 

## **MILKENINSTITUTE.ORG**

## SANTA MONICA

## WASHINGTON

1101 A∨ <sup>★</sup> 620 a , D.C. 20005 +1.202.336.8930

## LONDON

23∛ a∨ 1∛ 2E +44 (0) 207.043.5926

## SINGAPORE

8<sub>V</sub> a a a #15-05 A a<sup>≼</sup> a 1 <sup>≼</sup> a 018960 +65.6636.2507

